Mark Scheme (Results)

Summer 2021

Pearson Edexcel International GCSE Mathematics A (4MA1)
Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question paper log number P65918
Publications Code 4MA1_2H_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods mark the one that leads to the answer on the answer line. If there is no answer given then mark the method that gives the lowest mark and award this mark.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

NOTES

Please note: [height $=] 8+0.5 \times 6(=11)$ [metres] means we do not need to see 'height $=$ ' or 'metres' and if we see $8+0.5 \times 6$ we can award the method mark - and we can award the method mark if we see 11 without the working.

In the mark scheme, if we see a number written " 82.5 "(or " 82.5 ") in speech marks it means the number can be a followed through value, gained from correct working but with an inaccurate result from this working. It does not mean that the student can use any value. If a student can use any previous value that has been stated, it will be made clear in the mark scheme.

When a certain degree of accuracy is requested in the question, students will normally be given the mark if they give this accuracy or better eg
Q6 asks for one decimal place which gives 10.4
The mark scheme says accept 10.4 - 10.42
Therefore full marks can be awarded for an unrounded answer such as 10.416
If in the working we saw 10.4 or 10.416 and then 10 on the answer line, we could award full marks.

If we did not see an answer in the range $10.4-10.42$ and the answer of 10 was given then the student would not be able to gain the accuracy mark - as long as correct working was shown the response could be awarded the method marks. An answer of 10 (with no 10.4 - 10.42) with no working or incorrect working would gain no marks.
In most cases rounding instructions are for guidance only and we will accept the figure or better (more figures than specified). If we are insistent on certain rounding, this will be clearly stated in the mark scheme.

International GCSE Maths

Apart from questions $1,2,4 \mathrm{~b}, 5,8,12 \mathrm{~d}, 19,21,23$ (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1	$\begin{array}{\|c} \hline \text { eg } 2 \times 2 \times 150 \text { or } \\ 3 \times 5 \times 40 \text { or } \\ 2 \times 3 \times 100 \text { or } \\ 5^{2} \times 24 \text { or } \end{array}$ or		3	M1 for at least 2 correct stages in prime factorisation which give 2 prime factors may be in a factor tree or a table or listed eg 2, 2, 150 (see LHS for examples of the amount of work needed for the award of this mark, allow no more than one mistake ft (eg one mistake with 2 prime factors ft : $600=200 \times 30=2 \times 100 \times 5 \times 6))$
	eg $2 \times 2 \times 2 \times 3 \times 5 \times 5$ oe			M1 for 2, 2, 2, 3, 5, 5 (ignore 1s) (may be a fully correct factor tree or ladder)
	Working required and note that the answer must be given as a product of powers of prime factors	$2^{3} \times 3 \times 5^{2}$		$\begin{array}{ll}\text { A1 } & \left.\begin{array}{l}\text { dep on M2 } \\ \text { can be any order (allow } 2^{3} .3 .5\end{array}\right)\end{array}$

Question	Working	Answer	Mark	Notes
2	$\text { eg } \frac{18}{7} \text { and } \frac{9}{8} \text { oe }$		3	M1 both fractions expressed as improper fractions, no need for \div or \times may be equivalent to those given eg $\frac{36}{14}$ or $\frac{27}{24}$ etc. A student could invert $\frac{9}{8}$ and show multiplication - as shown in the 2 nd M1, this mark is then implied.
	eg $\frac{18}{7} \times \frac{8}{9}$ oe or oe $\frac{144}{56} \div \frac{63}{56}$			M1 or for both fractions expressed as equivalent fractions with denominators that are a common multiple of 7 and 8 eg $\frac{144}{56} \div \frac{63}{56}$
	eg $\frac{18}{7} \times \frac{8}{9}=\frac{144}{63}=\frac{16}{7}=2 \frac{2}{7}$ or $\frac{18}{7} \times \frac{8}{9}=\frac{144}{63}=2 \frac{18}{63}=2 \frac{2}{7}$ or $\frac{18^{2}}{7} \times \frac{8}{9^{1}}=\frac{16}{7}=2 \frac{2}{7}$ or $\frac{18}{7} \div \frac{9}{8}=\frac{144}{56} \div \frac{63}{56}=\frac{144}{63}=\frac{16}{7}=2 \frac{2}{7}$ or correct working to $\frac{16}{7}$ and writing $2 \frac{2}{7}=\frac{16}{7}$	shown		A1 Dep on M2 for conclusion to $2 \frac{2}{7}$ from correct working - either sight of the result of the multiplication or division eg $\frac{144}{63}$ must be seen and then cancelled or correct cancelling prior to the multiplication to $\frac{16}{7}$ or writing $2 \frac{2}{7}=\frac{16}{7}$ (maybe on first line of working) and correct working as far as LHS $=\frac{16}{7}$ NB: use of decimals scores no marks
				Total 3 marks

Question	Working	Answer	Mark	Notes
$\mathbf{3}$	$180+149$ or $360-31$		2	M1
	Working not required, so correct answer scores full marks	329		A1

Question	Working	Answer	Mark	Notes	
4 (a)(i)	other seen orders of letters: $\begin{aligned} & \mathrm{a}, \mathrm{~b}, \mathrm{~d}, \mathrm{e}, \mathrm{i}, \mathrm{l}, \mathrm{n}, \mathrm{r}, \mathrm{z} \\ & \mathrm{~b}, \mathrm{r}, \mathrm{I}, \mathrm{a}, \mathrm{e}, \mathrm{z}, \mathrm{l}, \mathrm{n}, \mathrm{~d} \end{aligned}$	b, r, a, z, i, 1, e, n, d	1	B1	no repeats, letters can be in any order. Condone capital letters rather than lower case letters. (no need for commas)
(ii)		b, z	1	B1	No repeats, letters can be in any order. Condone capital letters. (no need for a comma)
(b)		correct explanation that shows they know the meaning of intersection and empty set	1	B1	eg letter ' a ' is in both sets $B \cap K=\{\mathrm{a}\}$ Set B and set K have an element (or letter) in common. There is a letter that is in set B and in set K There is an intersection so it isn't the null set There is a letter in common (do not allow 'letters' or 'elements' (plural) in common) (If students mention the letter that is in common, it must be the correct one (ie a))
					Total 3 marks

Question	Working	Answer	Mark	Notes
5	Angle $E B C$ or $E C B=(180-44) \div 2(=68)$		5	M1 Could be seen on diagram
	Angle $G B C=180-" 68$ " ($=112$) or Angle $G B C=" 68 "+44(=112)$ or Angle $B G H=" 68$ " (same as $E B C$) Angle $A B E=180-" 68 "(=112)$ and Angle $B G F=" 112 "$ or Angle $A B G=" 68$ " and Angle $B G H=" 68$ " or Angle $F G J=" 68$ " or Angle $B G F=180-" 68 "(=112)$			M1 for a method to as far as one step away from working out Angle $J G H$ (an angle corresponding or vertically opposite to $J G H$ or at the same point on a straight line with $J G H$) Could be seen on diagram. (the award of this mark also implies the previous M1)
	Working not required, so correct angle scores 3 marks (unless from obvious incorrect working)	112		A1 Could be seen in correct place on diagram
	NB: reasons must include the underlined words Accept \angle for angle(s) and \sqcup for triangle For all angles: They must be clearly stated as the correct angle or shown on the diagram in the correct position. (eg just seeing 68 in working without a label is not sufficient for the award of a mark for angle $E B C$)			B2 for correct answer with full reasons for their method eg isosceles triangle (or $2 \underline{\text { equal sides, }} \underline{2 \text { equal angles) }}$ Angles in a triangle sum to $\underline{180^{\circ}}$ or angles in a triangle Angles on a straight line sum to 180° Angles on a straight line sum to 180° Exterior angle in a triangle is equal to the two opposite interior angles. Vertically opposite angles are equal. Vertically opposite angles are equal. Corresponding angles are equal. Alternate angles are equal Allied angles sum to 180° (or co-interior angles) Angles at a point (or full turn) add up to 360° (or angles at a point) (B1 for one correct reason appropriate to their method, dep on M1)

Question	Working	Answer	Mark	Notes	
7	$\begin{aligned} & \sin 42=\frac{6.5}{x} \text { or } \frac{x}{\sin 90}=\frac{6.5}{\sin 42} \\ & \text { or } \cos 48=\frac{6.5}{x}[\text { where } 48=180-90-42] \end{aligned}$		3		or use of tan to find the horizontal side and then a correct first step in Pythagoras' theorem ie $[$ base $=] \frac{6.5}{\tan 42}(=7.21 \ldots)$ and $\left[x^{2}=\right] 6.5^{2}+" 7.21 \ldots{ }^{2}$
	$\begin{aligned} & {[x=] \frac{6.5}{\sin 42} \text { or } \frac{6.5 \sin 90}{\sin 42}} \\ & \text { or }[x=] \frac{6.5}{\cos 48}[\text { where } 48=180-90-42] \end{aligned}$				or complete method using Pythagoras $[x=] \sqrt{6.5^{2}+" 7.21 \ldots{ }^{12}}$ (If students give this statement with nothing before it they gain M2)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	9.7			accept 9.7-9.72
					Total 3 marks

Question	Working		Answer	Mark	Notes
8	$\begin{aligned} & \begin{array}{c} \mathrm{eg} \quad 10 a+4 c=20 \\ +2 a-4 c=7 \end{array} \\ & \mathrm{eg} \\ & {\left[\begin{array}{l} \left.c=\frac{10-5 a}{2}\right] \mathrm{oe} \\ 2 a-4\left(\frac{10-5 a}{2}\right)=7 \mathrm{oe} \end{array}\right.} \end{aligned}$	$\begin{aligned} & \text { eg } \begin{array}{r} 10 a+4 c=20 \\ -10 a-20 c=35 \end{array} \\ & \text { eg } \\ & {\left[a=\frac{7+4 c}{2}\right] \mathrm{oe}} \\ & 5\left(\frac{7+4 c}{2}\right)+2 c=10 \mathrm{oe} \end{aligned}$		3	M1 multiplication of one or both equation(s) with correct operation selected (allow one arithmetic error) (if + or - is not shown then assume it is the operation that at least 2 of the 3 terms have been calculated for) or correct rearrangement of one equation with substitution into second
	$\begin{aligned} & \text { eg } 5 \times " 2.25 "+2 c=10 \text { or } 2 \times \\ & " 2.25 "-4 c=7 \end{aligned}$	$\begin{aligned} & \text { eg } 5 a+2 \times "-0.625 "=10 \\ & \text { or } 2 a-4 \times "-0.625 "=7 \end{aligned}$			M1 (dep on previous M1 but not on a correct first value) correct method to find second unknown - this could be a correct substitution into one of the equations given or calculated or starting again with the same style of working as for the first method mark
	Working required		$\begin{gathered} a=2.25 \\ c=-0.625 \end{gathered}$		A1 oe eg $a=\frac{9}{4}, c=-\frac{5}{8}$ for both solutions dependent on first M1
					Total 3 marks

Question	Working	Answer	Mark	Notes
(i)	$(x \pm 6)(x \pm 4)$	2	M1 or $(x+a)(x+b)$ where $a b=-24$ or $a+b=2$	
	Working not required, so correct answer scores full marks	$(x+6)(x-4)$		A1
(ii)	Answer must come from the factors in (i) as the questions says 'Hence solve...	$-6,4$	1	B1ftMust follow through from their factors in (i), so even if the answers 4 and -6 are given the mark can only be awarded if it follows from the factorisation in (i) (dep on 2 factors)
			NB: Tat 3 marks	
	Some students may show the whole of their working in the space for (i) or (ii). Please award the marks for (i) and (ii) so long as there is no ambiguity.			

Question	Working	Answer	Mark	Notes	
10	$\begin{aligned} & 11.2^{2}-7.4^{2}(=70.68) \text { or } \\ & {[x=] \cos ^{-1}\left(\frac{7.4}{11.2}\right)(=48.64 \ldots) \text { or }} \\ & {[y=] \sin ^{-1}\left(\frac{7.4}{11.2}\right)(=41.35 \ldots) \text { or } \sin ^{-1}\left(\frac{7.4 \sin 90}{11.2}\right)} \end{aligned}$		5	M1	A correct first stage to finding the perpendicular height of the triangular cross section
	$\begin{aligned} & \text { eg } \sqrt{11.2^{2}-7.4^{2}}(=8.407 \ldots) \text { or } \\ & {[h=] \sin " 48.64 \ldots " \times 11.2 \text { or } \tan " 48.64 \ldots " \times 7.4(=8.407 \ldots) \text { or }} \\ & {[h=] \cos " 41.35 \ldots " \times 11.2 \text { or } \frac{7.4}{\tan " 41.35 \ldots "}(=8.407 \ldots)} \\ & \hline \end{aligned}$				oe eg $h=\frac{11.2 \sin " 48.64 \ldots "}{\sin 90}$
	$\begin{aligned} & \hline \text { eg } 7.4 \times \text { "8.407" } \div 2(=31.10 \ldots .) \\ & \text { or } 7.4 \times \text { " } 8.407 " \times 15(=933.19 \ldots) \\ & \hline \end{aligned}$				for method to find area of cross section or volume of cuboid
	$\begin{aligned} & \text { eg " } 31.10 " \times 15(=466.59 \ldots) \\ & \text { or "933.19" } \div 2(=466.59 \ldots) \\ & \hline \end{aligned}$				complete method to find volume of the prism
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	467			accept 466-467 SCB2 (if M0 awarded) for $0.5 \times 7.4 \times \sqrt{11.2^{2}+7.4^{2}} \times 15(=745)$ or SCB1 (if M0 awarded) for $\begin{aligned} & 7.4 \times \sqrt{11.2^{2}+7.4^{2}} \times 15(=1490) \text { or } \\ & 0.5 \times 7.4 \times \sqrt{11.2^{2}+7.4^{2}}(=49.6 \ldots) \text { or } \\ & 0.5 \times 7.4 \times 11.2 \times 15(=621.6) \text { or } 622 \end{aligned}$
					Total 5 marks

Question	Working	Answer	Mark	Notes	
11(a)	$\begin{aligned} & \text { eg } 100+24(=124[\%]) \text { or } 1+0.24(=1.24) \text { or } \\ & \frac{180000}{124}(=1451.6 \ldots) \\ & \hline \end{aligned}$		3	M1	
	$\begin{aligned} & \text { eg } 180000 \div 1.24 \\ & 180000 \div 124 \times 100 \text { or } 180000 \times 100 \div 124 \text { oe } \end{aligned}$			M1 for a complete method	
	Working not required, so correct answer scores full marks (unless from obvious incorrect working) $N B$: this question is one where students could misread the number of zeros(eg one too many or one too few) in the question, up to M2 could be awarded if a correct method is seen with this misread	145000		A1 accept $145000-145200$ (if a correct answer is seen in working and then rounded incorrectly, award full marks) (if no marks awarded, SCB1 for 223200 or 223000)	
(b)	for 0.018×120000 oe or 2160 or 1.018×120000 oe or 122160		3	M1 For finding 1.8% or 101.8% of the value	OR M2 for $120000 \times$ 1.018^{3} or 120000×1.018^{4} or 128876.09 (M1 for $120000 \times$ 1.018^{2} or 124358.88)
	$\begin{array}{\|l\|} \hline 1.018 \times " 122160 "(=124358.88) \text { oe and } \\ 1.018 \times " 124358.88 "(=126597.34) \text { oe } \end{array}$			M1 for completing the method	
	Working not required, so correct answer scores full marks (unless from obvious incorrect working) $N B$: this question is one where students could misread the number of zeros in 120000 (eg one too many or one too few) in the question, up to M2 could be awarded if a correct method is seen with this misread	127000		A1 or 126597-126600 (if a correct answer is seen in working and then rounded incorrectly, award full marks) SC: if no other marks gained award M1 for 1.054×120000 oe or 126480 or 6480 (accept $(1+0.018)$ as equivalent to 1.018 throughout)	
					Total 6 marks

Question prking		Answer	Mark	Notes
12 (a)			2	M1 for at least 4 points plotted correctly at end of interval or for all points plotted consistently within each interval of the associated frequency table (eg at 2.5, 7.5, 12.5, 17.5, $22.5,27.5$ or $0,5,10,15,20,25$) at the correct height
	(NB: a 'bar chart' type graph scores zero marks)	$\begin{aligned} & \text { correct } \\ & \text { cf } \\ & \text { graph } \\ & \hline \end{aligned}$		A1 All points plotted correctly at end of interval (tolerance 1 small square) and joined with a curve or line segments accept curve that is not joined at $(0,0)$.
(b)	If answer is in the given range, then award the mark - unless from obvious incorrect working	$\begin{gathered} 10.5 \text { to } \\ 12 \end{gathered}$	1	B1ft accept answer in range $10.5-12$ or ft their cumulative frequency graph (must be an ascending graph) (allow 1 small square tolerance)
(c)	NB: readings are 5.5-7 and 15.5-17 (but for this M1 these do not have to be correct if correct working is shown - eg lines or marks indicating use of CF 20 (or 20.25) and CF 60 (or 60.75) with an indication on the Distance axis at the correct points (or they can just show the correct readings))		2	M1ft For correct use of LQ and UQ, ft from a cum freq graph provided method is shown - eg a line horizontally to the graph from readings of CF 20 and CF 60 to meet the graph and then a vertical line to the Distance axis(even if wrongly read scale) or clear marks on the graph and Distance axis that correspond to the correct readings or correct values from the Distance axis
	If answer is in the given range, then award the marks - unless from obvious incorrect working	$\begin{gathered} 8.5 \text { to } \\ 11.5 \\ \hline \end{gathered}$		A1ft Accept a single value in range 8.5 to 11.5 or ft from their cumulative frequency graph provided method is shown
(d)	not in context: office B workers have a higher median than office A workers oe in context: office B workers [tend to] travel further oe		2	B1 ft comparison of medians e.g. Office B workers travel further [but if they have a wrong median then correct comparison of this with the 15 km] (Must compare to median in (b))
	not in context: the IQR for office A workers is bigger than the IQR for office B workers oe in context: The distances for the office A workers are more spread out/more varied oe			B1 ft comparison of IQR eg Office A distances are more spread (must compare to IQR in (c)) NB: To award both marks at least one comparison must be in context
				Total 7 marks

Question	Working	Answer	Mark	Notes
13 (a)		0.3		B1 oe first race branch correct
		0.6, 0.4, 0.6	2	B1 oe second race branches correct
(b)	$\begin{aligned} & 0.7 \times " 0.6 "(=0.42) \text { oe } \\ & \text { or " } 0.3 " \times \times 0.4 "(=0.12) \text { oe } \\ & \text { or } 0.7 \times 0.4(=0.28) \text { oe } \\ & \text { or " } 0.3 " \times \times 0.6 "(=0.18) \text { oe } \end{aligned}$			M1 ft their tree diagram dep on probabilities being less than 1
	$\begin{aligned} & \hline " 0.42 "+" 0.12 " \text { oe } \\ & \text { or } 1-" 0.28 "-" 0.18 " \text { oe } \end{aligned}$			M1 ft complete method to find probability that Emilie wins exactly one of the races
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.54	3	A1 oe, eg $\frac{27}{50}$ ft from their tree diagram on M marks only
(c)	$\begin{aligned} & 0.7 \times 0.4 \times(1-0.6)(=0.112) \text { oe or } \\ & " 0.54 " \times 0.3(=0.162) \text { oe or } \\ & 0.7 \times 0.6 " \times 0.3+" 0.3 " \times " 0.4 " \times 0.3(=0.162) \end{aligned}$			M1 ft
	eg "0.112" + "0.162"			M1 ft For a fully correct method
	Working not required, so correct answer scores full marks (unless from obvious incorrect working) NB: allow decimals, fractions or percentages with \% as oe for probability	0.274	3	A1 oe, eg $\frac{137}{500}$ ft from (a) and (b) on M marks only
				Total 8 marks

Question	Working	Answer	Mark	Notes
14		$\frac{4 y^{5}}{3 x^{2}}$	3	B3 Accept $\frac{4}{3} x^{-2} y^{5}$ or $\frac{4 x^{-2} y^{5}}{3}$ or $1.3 x^{-2} y^{5}$ oe NB: Must see 4 and 3 and not $16^{\frac{1}{2}}$ or $9^{\frac{1}{2}}$ or $16^{-\frac{1}{2}}$ or $9^{-\frac{1}{2}}$ (allow use of $1.3[33$..])
				If not B3 then B2 for 2 of: correct fraction ($\frac{4}{3}$ or $1 . \dot{3}$)(allow use of $1.3[33$..]) or x term correct (x^{2} on denominator or x^{-2} on numerator) or y term correct (y^{5} on numerator or y^{-5} on denominator)
				If not B2 then B1 for 1 of : correct fraction or x term correct or y term correct or for one of applying negative power to at least 3 out of 4 of $9, x^{4}, 16, y^{10}$ or applying square root to at least 3 out of 4 of $9, x^{4}, 16, y^{10}$ eg at least 3 of the 4 parts of $\frac{16 y^{10}}{9 x^{4}}$ or $\frac{16 x^{-4}}{9 y^{-10}}$ or $\frac{\frac{1}{9} x^{-4}}{\frac{1}{16} y^{-10}}$ or $\frac{3 x^{2}}{4 y^{5}}$ oe
				Total 3 marks

Question	Working	Answer	Mark	Notes
16 (a)	$A=\frac{k}{r^{2}}$		3	M1 oe k can be any letter (must be a letter and not 1)
	$5=\frac{k}{0.3^{2}} \text { oe or } k=0.45 \mathrm{oe}$			M1 implies first M1 if you see this stage
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$A=\frac{0.45}{r^{2}}$		A1 oe with A as the subject eg $A=\frac{9}{20 r^{2}}$ (allow $A=\frac{k}{r^{2}}$ where $k=0.45$ oe) (SC if M0 scored then award B2 for $A \propto \frac{0.45}{r^{2}}$ oe)
(b)	$\begin{aligned} & {[A=] \frac{" 0.45 "}{(7.5 A)^{2}} \text { oe or } \frac{" 0.45 "}{56.25 A^{2}} \text { or }} \\ & \frac{9}{20(7.5 A)^{2}} \text { oe } \end{aligned}$		3	M1 ft from (a) dep on M2 in (a) ([$A=] \frac{" 0.45 "}{7.5 A^{2}}$ is zero marks unless recovered later)
	$A^{3}=\frac{" 0.45 "}{56.25}\left(A^{3}=\frac{1}{125}\right.$ or 0.008 oe$)$ or $125 A^{3}=1$ oe			M1 ft their 0.45 dep on M2 in (a) Must include A^{3}
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.2		A1 oe

Question	Working	Answer	Mark	Notes	
17	$\operatorname{eg} \frac{4-(-1)}{6-4}\left(=\frac{5}{2}=2.5\right)$		4	M1	for a method to find the gradient of \mathbf{L}
	$\mathrm{eg} \frac{-1}{" 2.5 "}\left(=-\frac{2}{5}=-0.4\right) \text { or } \frac{-1}{\text { their gradient }} \mathrm{oe}$			M1	ft for a method to find the gradient of \mathbf{M} if their gradient of \mathbf{L} clearly stated (even if no method shown for gradient of \mathbf{L})
	$\begin{aligned} & y="-0.4 " x+8 \text { oe } \\ & \text { eg } y-8=-\frac{2}{5}(x-0) \\ & \text { or } \\ & (8 \div 2) \times 5(=20) \text { oe or } \\ & 8 \div(- \text { 'their gradient of } \mathbf{M}) \end{aligned}$				dep on previous M1 for substitution of $(0,8)$ into equation for a line or use of $(8 \div 2) \times 5(=20)$ (maybe on diagram) NB: 20 gains M3 if clearly intended as x coordinate (stated or on a diagram)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$(20,0)$		A1	
					Total 4 marks

Question	Working	Answer	Mark	Notes
18	[ADC =] 180-98 ($=82$)		6	M1 may be seen on diagram
	$\left[A C^{2}=\right] 8^{2}+7.5^{2}-2 \times 8 \times 7.5 \times \cos (98)(=136.95 \ldots)$			M1 correct equation for $A C$ or $A C^{2}$
	$[A C=] \sqrt{136.95 "}$ or $\sqrt{64+56.25+16.7 \ldots . .}(=11.7 \ldots)$ oe			M1 complete method to find $A C$ showing correct order of operations
	$\begin{aligned} & \operatorname{eg}\left[[A D=] \frac{" 11.7 " \sin 35}{\sin " 82 "}(=6.77 . .) \text { or }[D C=] \frac{" 11.7 " \times \sin " 63 "}{\sin " 82 "}(=10.5 . .)\right. \text { oe } \\ & \text { (where " } \mathbf{8 2} "=\mathbf{1 8 0}-\mathbf{9 8}, \quad " 63 "=180-" 82 "-35) \end{aligned}$			$\begin{array}{ll}\text { M1 } & \text { correct calculation for } \\ & A D \text { or } D C \\ & \text { dep on } 1^{\text {st }} \mathrm{M} 1 \text { and } 2^{\text {nd }} \mathrm{M} 1\end{array}$
	$\begin{aligned} & \text { eg }[A D=] \frac{" 11.7 " \sin 35}{\sin " 82 "} \text { and }[D C=] \frac{" 11.7 " \sin " 63 "}{\sin " 82 "} \text { oe or } \\ & {[A D=] \frac{" 11.7 " \sin 35}{\sin " 82 "} \text { and }[D C=] \sqrt{" 11.7^{\prime 2}+" 6.77^{" 2}-2 \times " 11.7 " \times " 6.77 " \times \cos " 63 "}} \\ & {[D C=] \frac{" 11.7 " \sin " 63 "}{\sin " 82 "} \text { and }[A D=] \sqrt{111.7^{\prime \prime 2}+" 10.5 "^{\prime 2}-2 \times " 11.7 " \times " 10.5 " \times \cos 35}} \\ & \text { Where " } 63 "=180-" 82 "-35 \end{aligned}$			M1 correct calculations for $A D$ and $D C$ $(A D=6.77 \ldots$ $D C=10.5 \ldots)$ dep on $1^{\text {st }}$ M1 and $2^{\text {nd }}$ M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	32.8		A1 accept 32.7-32.9
				Total 6 marks

Question	Working		Answer	Mark	Notes
19	$x^{2}+(3-2 x)^{2}=18$	$\left(\frac{3-y}{2}\right)^{2}+y^{2}=18$		5	M1 substitution of linear equation into quadratic
	$5 x^{2}-12 x-9[=0]$ oe	$5 y^{2}-6 y-63[=0]$ oe			M1 simplified to a correct 3 term quadratic
	$\begin{gathered} 2 \times 5 \\ 5\left[\left(x-\frac{12}{10}\right)^{2}-\frac{144}{100}\right]-9=0 \mathrm{oe} \end{gathered}$	$\begin{aligned} & (5 y-21)(y+3)[=0] \\ & \frac{-(-6) \pm \sqrt{(-6)^{2}-4 \times 5 \times(-63)}}{2 \times 5} \\ & 5\left[\left(y-\frac{6}{10}\right)^{2}-\frac{36}{100}\right]-63=0 \text { oe } \end{aligned}$			M1ft dep on M1 for solving their 3 term quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error and some simplification - allow as far as $\frac{12 \pm \sqrt{144+180}}{10}$ or $\frac{6 \pm \sqrt{36+1260}}{10}$)(if completing the square allow as far as shown)
			$\begin{gathered} x=-0.6 \\ \text { and } x=3 \\ \text { OR } y=4.2 \\ \text { and } y=-3 \\ \hline \end{gathered}$		A1 oe dep on M2 for both x-values OR both y-values
	Working must be shown		$\begin{gathered} x=-0.6 \\ y=4.2 \\ x=3 \\ y=-3 \\ \hline \end{gathered}$		A1 oe dep on M2 (must be clearly shown as correct pairs), accept answers given as coordinates
					Total 5 marks

Question	Working	Answer	Mark	Notes	
20	eg $\sqrt{\frac{36}{25}}\left(=\frac{6}{5}\right)$ or $\sqrt{\frac{25}{36}}\left(=\frac{5}{6}\right)$ or $\sqrt{36}: \sqrt{25}(6: 5)$ or $\sqrt{25}: \sqrt{36}(5: 6)$ or $\frac{(\sqrt{25})^{3}}{(\sqrt{36})^{3}}=\left(\frac{125}{216}\right)$ oe or $\frac{36^{3}}{25^{3}}=\frac{(\text { vol of large })^{2}}{300^{2}}$ or $\frac{36}{25}=\frac{(\text { volof large })^{\frac{2}{3}}}{300^{\frac{2}{3}}}$ oe		3		for a correct scale factor for length - may be given as a fraction or ratio or a correct scale factor for volume given as a fraction or ratio or a correct equation for the volume of each large block
	eg $300 \times\left(" \frac{6}{5}\right)^{3}$ or $\left.300 \div\left(" \frac{5}{6}\right)^{3}\right)^{3}$ oe or $\sqrt{\frac{300^{2} \times 36^{3}}{25^{3}}}$ or $\left(\frac{36 \times 300^{\frac{2}{3}}}{25}\right)^{\frac{3}{2}}$ oe				for a complete method to find the volume of a large block
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	518.4			allow 518
					Total 3 marks

Question	Working	Answer	Mark	Notes
21	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] 2 \times k x-16 x^{-2}$ or $2 k x-\frac{16}{x^{2}}$ oe		5	M2 for both terms differentiated correctly (M1) for one term differentiated correctly
	"2kx-16x ${ }^{-2}$ " $=0$ oe			M1 ft dep on M1
	$\text { eg } \frac{8}{27} k=8 \text { or } \frac{4}{3} k=36 \text { or } k=27 \text { oe }$			M1 (not ft) for substituting $x=\frac{2}{3}$ into their correct equation for k and getting as far as one step from the value of k or the correct value of k
	Working must be seen	36		A1 dep on M4
				Total 5 marks

Qu	Working	Answer	Mark	Notes	
22	$[\mathrm{g}(x)=] 2(x-3)^{2}-5$		4	B2	for $a=2, b=3$ and $c=5$ correct (stated or shown) (B1 for one of $a=2, b=3$ and $c=5$ correct)
	stretch y direction scale factor 2 oe [ft their a] or translation $\binom{3}{-5}$ (ft correct use of their b and c) oe			M1	Stretch and a correct description of the stretch or translation and a correct description of the translation NB: must include the word translation (or translate) and stretch
		Correct transformations in correct order		A1	Stretch y direction scale factor 2 followed by translation $\binom{3}{-5}$ oe eg translation $\binom{3}{0}$, stretch SF2 in y direction followed by translation $\binom{0}{-5}$
				Total 4 marks	
$\begin{gathered} 22 \\ \text { Alt } \\ \hline \end{gathered}$	$[\mathrm{g}(x)=] 2(x-3)^{2}-5$		4		for $a=2, b=3$ and $c=5$ correct (stated or shown) (B1 for one of $a=2, b=3$ and $c=5$ correct)
	$\begin{aligned} & \text { translation }\binom{3}{-2.5} \text { (ft correct use of their } \\ & b \text { and } 0.5 c \text { oe or stretch } y \text { direction scale } \\ & \text { factor 2 (ft their } a \text {) } \end{aligned}$			M1	A correct description of the stretch or the translation
		Correct transformations in in correct order		A1	Translation $\binom{3}{-2.5}$ oe followed by stretch y direction scale factor 2
				Total 4 marks	

23	$\operatorname{eg} \frac{\left(\frac{N+3}{2}\right)}{N}\left(=\frac{N+3}{2 N}\right)$	eg where $b=$ number of black pens $\frac{b}{2 b-3}$ or $\frac{b}{N} \text { and } N=2 b-3\left(\text { or } b=\frac{N+3}{2}\right)$	eg where $r=$ number of red pens $\frac{r+3}{2 r+3}$ or $\frac{r+3}{N} \text { and } N=2 r+3\left(\text { or } r=\frac{N-3}{2}\right)$		5	M1 for making a correct start by finding the probability of the first pen being black for their method. If in 2 variables, one must also be defined in terms of the other. (any letter may be used for the variable)
	$\frac{\text { eg }}{\frac{N+3}{2 N} \times \frac{N-3}{2(N-1)}=\frac{9}{35}}$	$\begin{aligned} & \text { eg } \frac{b}{2 b-3} \times \frac{b-3}{2 b-4}=\frac{9}{35} \text { or } \\ & \frac{b}{N} \times \frac{b-3}{N-1}=\frac{9}{35} \end{aligned}$	$\begin{aligned} & \text { eg } \frac{r+3}{2 r+3} \times \frac{r}{2 r+2}=\frac{9}{35} \text { or } \\ & \frac{r+3}{N} \times \frac{r}{N-1}=\frac{9}{35} \text { and } N=2 r+3 \end{aligned}$			M1 oe dep on previous M1 for a correct equation for black, red - must be in one variable or if 2 variables, one must be defined in terms of other.
	$\begin{aligned} & \text { eg } \quad 35(N+3)(N-3) \\ & =9(2 N(2 N-2)) \\ & \text { or } \\ & 35\left(N^{2}-9\right)= \\ & \quad 9\left(4 N^{2}-4 N\right) \end{aligned}$	$\begin{aligned} & \text { eg } 35\left(b^{2}-3 b\right)= \\ & 9\left(4 b^{2}-14 b+12\right) \end{aligned}$	$\begin{aligned} & \text { eg } 35\left(r^{2}+3 r\right)= \\ & 9\left(4 r^{2}+10 r+6\right) \end{aligned}$			M1 dep on previous marks for a correct equation in one variable with no algebraic fractions - brackets may or may not be expanded
	$\operatorname{eg} N^{2}-36 N+315(=$ $0)$	eg $b^{2}-21 b+108(=0)$	$\mathrm{eg} r^{2}-15 r+54(=0)$			M1 For correctly rearranging their equation to a 3 term quadratic
				$\begin{aligned} & 21, \\ & 15 \\ & \hline \end{aligned}$		A1 cao dep on M4
						Total 5 marks

